

distributions

Keith J Yoder¹, Geoffrey Brookshire¹, Spencer Gerrol¹, Colin Quirk¹, Ché Lucero¹ ¹SPARK Neuro Inc., New York, NY, USA

Background

- Fractal dimension (FD) quantifies a signal's similarity to itself across different time-scales.¹
- In electroencephalography (EEG), FD decreases with neurodegeneration and with Alzheimer's disease (AD).²

We present a novel method of measuring fluctuations in FD. Our metric outperforms traditional measures of FD in identifying dementia and Alzheimer's disease.

Fractal Dimension Distributions

Traditional Approach

Calculate FD using the full time-course - Katz's method⁴

Fractal Dimension (FD)

Fractal Dimension Distributions (FDD)

- 1. Slide 1 s window across time-course
- 2. Calculate FD in each window
- 3. Compute the Mean and SD across windows

FDD Mean, FDD Standard Deviation

Methods

- N = 148 (91 female; age 55-85) o 97 Control
 - 51 Dementia
 - 38 Alzheimer's disease
- 19-channel resting-state EEG
- 5 min eyes open, 5 min eyes closed
- We compared healthy subjects to subjects with dementia using:
 - Threshold-free cluster enhancement (TFCE)³
 - LASSO logistic regressions

FDD reveals more group differences

Identifying and differentiating dementias with EEG fractal dimension

FDD reveals AD-specific signals

FDD improves models

Target	ΔAIC	ΔR^2	
Dementia	-1.9	+.15	
AD-Dementia	-2.6	+.08	
 1 Company of a			

 Table 1. Comparison of model fit statistics

Conclusion

FDD is a novel method⁵ that can identify dementia and specifically predict AD.

FDD reveals bigger differences between controls and individuals with dementia than traditional full-time-course FD.

While some FDD features are useful for detecting all-cause dementia, other features are uniquely important for identifying ADdementia.

References

- [1] Mandelbrot. *Science* 156.3775 (1967)
- [2] Sun et al. *Entropy* 22.2 (2020)
- [3] Mensen & Khatami. *NeuroImage* 67 (2012)
- [4] Katz Compupters in Biology & Medicine 18.3 (1988)
- [5] Yoder et al. (*under review*)